
Journal o f  Statistical Physics, VoI. 21, No. 1, 1979 
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System of A. M. Oboukhov 

D.  M.  Sonechkin 1 

Received January 23, 1979 

The paper contains a numerical study of qualitative properties of motion 
in a dynamical system modeling a turbulent flow. It shows that after four 
bifurcations related to a growing active force there appears a strange 
attractor in the system and the motion becomes stochastic. 

KEY W O R D S  : Turbu len t  f l o w  ; s tochast ic  mot ion  ; s t range attractor.  

O b o u k h o v  (1> in t roduced  a quadra t i c  non l inear  system to mode l  a cascade 
mechan i sm of  energy t r ans fo rma t ion  in a tu rbu len t  flow, 
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u~,2~" = Qi- lu~- l ,ku~.~k  + Q(ui+l,4~-l~ 2 - u~+l,4k)2 _ Q2~ui,2 k 

f o r i =  2 , 3  ..... N -  l a n d l  ~< k ~< 2 ' - 2 ; a n d  

0~,2~ = Q i -  lu~- ~,ku~,2~ - Q2~ui,2~ ( lb )  

for  i = N and 1 ~< k ~< 2 N- 2; where Q > 1 is the scale reduct ion  pa rame te r  
for  the t rans i t ion  f rom the ith to the (i + 1)th row;  F > 0 is the  force ac t ing 
u p o n  the sys tem's  largest  scale mode.  

W h e n  the act ing force is very small  ( F  < Q2) the mo t ion  is of  a regular  
charac te r  (a l aminar  flow). In  the system's  phase  space this cor responds  to the 
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only steady-state point being Uo s = F, uf,~ = 0 for every i i> 1 ; k. A greater 
force causes a number of bifurcations to excite modes of an increasingly lower 
scale; the motion becomes more complicated and acquires a stochastic 
character (a turbulent flow). The first three bifurcations have been found by 
Glukhovsky~2~; they consist in the following. 

With F />  Q2 the fixed point of the laminar flow loses its stability and, 
depending on the sign of the initial perturbation, there appears one of the two 
secondary stationary regimes [uo s = Q2, u],l = + ( F -  Q2)1/2, uf, k = 0 for 
every i >/2; k]. In turn, when F >I Q6 + Q~, second-row modes get excited 
and one of the four stationary regimes is set up [u0 ~ = Q2, u],l = + Qa, 
u~,j = + _ Q ( F -  Q 6 _  Q2)l/2, u~,k = 0 , j =  1 or 2 , j r  k,u~,~ = 0 f o r e v e r y  
i >/ 3; k]. The third bifurcation, after which the system (1) has no steady- 
state solutions, can be observed with F = Q6 + Q2 + q(Q),  where q(Q) < 1, 
so that (d /dQ)q(Q) > 0, lime_.o~ q(Q) = 1. 

Further analysis is to be accomplished numerically through the study of 
mappings of some hypersurfaces (or Poincar6 maps) which are secants of the 
phase trajectories of system (1). Bearing in mind that (1) abides by a symmetry 
group in relation to all coordinates axes except for the senior one, it is 
sufficient for qualitative analysis of the situation after the third bifurcation 
to consider the phase space area where only three modes uo, ul,~, and u2,1 
are excited. Let the surface u0 = Q-2u~,~ + Q2 serve as a Poincar~ map, 
since it is a secant for all trajectories in the area except for the separatrix 
going from the secondary flow steady point to the steady point emerging 
after the second bifurcation (this separatrix lies wholly in the Poincar6 map). 

Numerical integration of system (1) in these circumstances shows that 
after the above-mentioned third bifurcation there emerges one stable limitary 
cycle in the vicinity of every steady point that has lost its stability (a stable 
steady point serves as cycle image in the Poincar6 map). If  the active force 
increases further, these cycles lose their stability, and at the moment of the 
fourth bifurcation there appears around every periodic motion an infinite set 
of invariant toruses enclosed in one another, on which the system trajectories 
accomplish quasiperiodic motion. Simultaneously, a heteroclinic structure 
emerges which includes all steady saddle points and separatrices joining them 
(with the symmetry taken into account). 

After the force exceeds the bifurcation value the invariant toruses 
disappear and an unstable limitary cycle replaces every stable one. The 
accompanying complicated motion is to be analyzed through the four simul- 
taneously excited modes Uo, ul,~, u2,~, and u2,2. Generally speaking, the 
Poincar6 map for this case should be three-dimensional. But, as seen in (1), 
in case of the modes at rest of the third and the subsequent rows, when mode 
u2,~ is excited, mode u2,~ is being damped, and contrariwise. Hence, all 
mappings on the three-dimensional Poincar6 map determined by the equation 
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Uo = Q-2(u~,l + u~,2)+ Q2 in hyperspace will tend to either its two- 
dimensional sheet u0 = Q-2u~,l + Q2 or to the sheet orthogonal to it, 

- 2  2 Q 2 .  , ,  Uo = Q /'/2,2 + With this separatrix" approximation of point map- 
pings in the Poincar6 map the system's motion may be represented as shown 
in Fig. 1. 

The typical trajectory of a point mapping appears in the shape of a curve 
making a number of turns around an unstable focus, for instance, in area 
u1,1 < 0, u2,z > 0, in the sheet Uo = Q-2t./9~,l + Q2. The closer to the focus is 
the initial point, the greater is the number of turns. Then the trajectory is 
transferred into area u~,~ > 0, where mode u2,1 is soon damped, while u2,2, 
which was formerly close to a state of rest, is rapidly increasing in modulus 
(its sign is determined by the sign of the initial state at the moment of transi- 
tion). Thereafter one has to consider the point mapping in the sheet Uo = 
Q-2u~,2 + Q2, where a similar picture is to be found, and so on. 

The set of such trajectories is attracting, according to the separatrix 
approximation mentioned above. At the same time each individual trajectory 
is unstable. Its transition from the vicinity of one focus to the vicinity of 
another depends on subtle details of prehistory and is therefore unpredictable 
if the accuracy of the modes' current coordinates is finite. As a result, as 
calculations show, the disjunction of temporal correlations in the system in 
question takes up the time of a trajectory return to the Poincar6 map. It is also 
noteworthy that the graph of subsequent changes in the mode Uo fluctuation 
amplitude reveals that along with the typical nonperiodic trajectory described 
earlier the attracting set contains dense periodic trajectories everywhere. 
Thus, the set in question cannot be differentiated in principle from Lorenz's 
strange attractor/3'~) 

We note in conclusion that with a further increase of the acting force 
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(under F > 2Q 6 + Q2) modes of the third and the subsequent rows are 
excited. Judging by the character of temporal correlations, and by the posi- 
tiveness of topological entropy determined through the symmetricized Jacobi 
matrix maximum eigenvalue of the right parts of system (1), as well as by the 
unpredictability of future phase coordinates with approximately given initial 
data, the basic peculiarities of the stochastic behavior of system (1) found in a 
strange attractor are preserved. 
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